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Abstract 

The theory of a strongly absorbing Laue interferometer 
for an arbitrary composition of the X-radiation has 
been developed on the basis of the Takagi equations. 
The coherent properties of interfering beams of poly- 
chromatic radiation are discussed. Formulas have been 
derived showing the dependence on the moir~ pattern 
and the contrast of interference fringes of the type of 
deviation of the interferometer geometry from the 
perfectly aligned case. The results of  an experiment for 
obtaining the moir~ pattern of a symmetric Laue case 
(LLL) interferometer with Bremsstrahlung radiation 
are presented. 

Analysis of the X-ray interferometer operation is 
usually carried out on the assumption that the radiation 
incident on a crystal is monochromatic (Pinsker, 1974). 
It is known from optical interferometry that inter- 
ference fringes may be observed not only with mono- 
chromatic but also with white light (Born & Wolf, 
1964). Such an interference pattern appears, for 
instance, in the Jamin interferometer, which resembles 
X-ray interferometers. It is also expected that inter- 
ference with X-ray 'white' radiation may be observed 
by X-ray interferometers. The consideration of such a 
problem seems to be interesting from the viewpoint of 
diffraction theory and also for a possible extension of 
the region of X-ray interferometer application. 

The present work analyses the conditions for the 
existence of interference with polychromatic radiation. 
The moir6 patterns produced by a focused interfer- 
ometer are shown to be similar to those observed using 
monochromatic radiation. The effect of defocusing on 
the visibility of the polychromatic interference fringes is 
considered. An experiment is described which is carried 
out with a symmetric Laue-case interferometer (LLL 
interferometer, Bonse & Hart, 1965); the results confirm 
the possibility of obtaining a diffraction moir6 pattern 
with polychromatic radiation. 

1. Diffraction of polychromatic radiation by the 
LLL interferometer 

When considering the diffraction of polychromatic 
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radiation by an interferometer we use the method 
proposed by Aristov, Shmytko & Shulakov (1977a) for 
analysing the contrast of a perfect-crystal topographical 
image. The essence of this method is that the radiation 
of a polychromatic point source expands into spherical 
monochromatic waves, the intensities of  each of these 
waves being calculated at all points of the film after 
their diffraction by the crystal. The total intensity is 
obtained by integrating over the range of wavelengths 
which contribute to the image at the given point. 

Fig. 1 is a diagram of the diffraction of  a divergent 
polychromatic beam by the LLL interferometer. The 
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Fig. 1. The diffraction of a divergent polychromatic beam 
by the LLL interferometer. O is the point source of radiation; 
S, M, A are wafers of the interferometer; I and II denote the first 
and second paths of the interfering waves; XYZ is the orthogonal 
coordinate system in use, with origin at the point O; OX is 
parallel to the normal to reflecting planes; OZ is normal to the 
surface of the interferometer wafers; q is the focusing point of the 
beams with different wavelengths; F is the photographic film; z~ 
is the distance from the radiation source to the interferometer; 
z L is the interferometer size; z 2 is the distance from the inter- 
ferometer to the focusing point q (z 2 = zl); z3 is the distance 
from the focusing point to the film (-z 2 _< z 3 < ~); at z 3 > 0 
the image on the film is inverted. 
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conditions for Bragg diffraction are satisfied for each 
wavelength for a very narrow range of/t 0 o angles (for a 
thick, strongly absorbing crystal zl0 o <~ 10 -5 rad), and 
we may thus consider each point rs~(Xsa,Ys~,Zs~) of the 
entrance surface of the first interferometer wafer to 
correspond to a certain wavelength determined from 
the condition: 

tan O =  --Xsl  cos v//z  l, (1) 

where 0 is the Bragg angle, and ~ is the angle between 
the diffraction plane and the plane y = 0.* 

As a result of diffraction by all the interferometer 
wafers, each of the monochromatic components of the 
wavefield extends in the manner shown in Fig. 2, and 
the wavefield at the exit interferometer surface corres- 
ponding to the wavefield at the point rsl has the same 
wavelength but has a noticeable intensity over a region 
of width of the order of 2 T t a n e m / C O S V / ,  where 
T = t s + t M + t A is the total thickness of the interfer- 
ometer slabs, and 2e m is the angular width of the mono- 
chromatic wavefield in the crystal with thickness 
T/cos ~ (for the 220 reflection of Si at 2 _~ 1.54 /~, 
T = 1.5 mm, cos ~, ~_ 1 T tan/~m is about 200 lam).f 

* Usually, the size of the irradiated area of an interferometer is 
much less than the distance z r In this case cos ~, ~ 1 and the 
wavelength of the diffracted rays varies in the OX direction only 
(for the equation of the curves for 2 = constant see, for instance, 
Aristov & Shulakov, 1975). 

~" Here and below for quantitative estimates we use the inter- 
ferometer parameters and geometry of the experiment by Bonse & 
Hart (1965): the 220 reflection of Si, Cu Ka radiation (2 = 1.54 A), 
T =  1.5 mm, cos ~,~_ 1, z~ ~_ - z  3 ~_ 500 mm. 
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Fig. 2. Scheme of the monochromatic spherical-wave diffraction 

by the LLL interferometer, ts ,  t M and t A are the thicknesses of the 
S, M and A wafers ( t  s + t M + t A = T); b~ and b E are the widths 
of air gaps between the wafers of the interferometer; 2e  m is the 
angular width of the Borrmann triangle in an absorbing crystal; 
indices o and h at amplitudes E i denote the beams propagating 
in the directions of the reciprocal-lattice points o and h after 
diffraction by S, M and A wafers. 

Let us choose a narrow wavelength range d2 such 
that the variation of the diffraction angle dO with a 
change in the wavelength should be much less than the 
angular width of reflection .40 o for a monochromatic 
w ave: 

dO = (d2/2) tan 0 ,~ AO o. (2) 

The fulfilment of this condition permits one to assume 
the field inside the range d,1, to be monochromatic, and 
to calculate the linear density of intensity dih(2,rA2) in 
this wavelength range at the point r A2(x A 2,YA2,ZA2) of the 
exit surface of the interferometer wafer A (zA2 = z~ + 

ZL):* 

dik(2,rA2 ) = (c/87r)cr(2)lEIh(2,rA2) + E~l(2, rAE)lEd2. 

(3) 

Here a(2) is the spectral density of radiation, c is the 
velocity of light, E~ and E~ I are the amplitudes of 
monochromatic waves travelling by paths I and II and 
propagating in the direction of the reciprocal-lattice 
point h. 

Let us determine the intensity distribution dlh(2,rF) 
for the range d2 at the point rF(XF,YF, Zr) on the film 
located at a distance z 2 --}- z 3 from the interferometer 
(z F = z 1 + z L + z 2 + %). The structure of a diffraction 
image varies slowly in the diffraction plane with 
distance z 2 + z 3 increasing owing to a negligible angular 
divergence of the diffracted rays A O o. This variation in 
the image structure may be neglected until (z 2 + z3),~ 
2Ttan  em/AO o COS ~' ~-- 40 m and it may be considered 
that the wavefield at each point rA2 corresponds to that 
at the point rp which lies at the intersection of the ray, 
traced from the point rA2 parallel to the wavevector of 
the diffracted beam EJ, (m, and the film plane. Because 
of the parallel transfer of the wavefield in the diffraction 
plane from the interferometer exit surface to the film, 
the intensity distribution dlh(2,rF) is a replica of the 
intensity distribution dih(~.,rA2 ) in this diffraction plane, 
with the coordinates of the points r I and rA2 related to 
the experimental geometry by the conditions: 

X F = X A 2  + (Z 2 q'- Z3)tan 0/cos qJ, 

YF = myYA2. (4) 

Here my = ZF/ZA2 is the image magnification factor in 
the OY direction. Because of divergence of the diffracted 
waves in the OY direction the intensity on the film is 
my times less than that on the exit surface of the A 
wafer; therefore, 

d l h ( t , r  F) = m-~ ~ dih(2,rA2). (5) 

* The dependence of the spectral density of the intensity on the 
wavelength at the point r,,i2 is shown in equation (A.16). Intensity 
dih(2,rA2 ) is obtained by multiplication of the right-hand side of 
equation (A.16) by d2. 
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For polychromatic beam diffraction by an interfer- 
ometer, the wavefield intensities with different 2 are 
superimposed at each point r e of a film. The range of 
wavelengths contributing to the total intensity at the 
observation point is determined by the width of the 
monochromatic beams (2Ttan era/cos ~'), the inter- 
ferometer defocusing (zlb = b 2 - -  b~) (usually, IAbl < 
10-20 lam), and the experimental geometry. It may be 
considered that only those rays are incident upon the 
point r e for which the following condition is fulfilled 
(Aristov et al., 1977a): 

tan 8 = (x e - Xq) cos ~ / z  s. (6) 

Here xq - zfb tan 0/cos ~, and xq + Ab tan 0/cos ~, are 
zero at the centres of the monochromatic beams El, and 
El, I, and the variable xq changes within the ranges 
[Xq COS ~ - -  Ab tan 01 < T tan e m and Ixq cos ~' + 
Ab tan 81 < T tan e,,, respectively. In terms of xq, the x 
coordinates of r e and rA2 are related by the condition: 
x e = -m~xA2 + (1 + mx)X q, where m x = z3/z 2 is the 
image magnification factor in the OX direction. From 
equation (6) it also follows that the beams E~(2,rF) and 
E~,~(2,re) of all wavelengths focus at z 3 = 0 in the range 
IXel < (Ttan  e,, + Izlbl tan 8)/cos ~,~_ 200-220 gm. 

Let us determine the intensity distribution //,(re), 
having integrated expression (5) over all wavelengths. 
On integrating it is convenient to substitute variable 2 
by xq, using the relation (6) and the Bragg equation 
2d n sin 8 = 2: 

xq = x e - 2z3/2d n cos 0 cos V, 

dxq = - ( z 3 / 2 d  ~ cos 3 8 cos ~')d2. (7) 

Changing the variables and integrating, we get: 

I n ( r e )  - - -  

oo 

c f a(xq, re)lE~(xq, rF) 
8 rcm x my -oo 

+ E~I(xq,re)12dxq, (8) 

where a(xq, rv) = a(rsl ) = (2d n cos a O cost/ / /zl)a(2 ) is 
the linear density of radiation diffracted at the point 
rs~ of the entrance surface of the S wafer and incident 
upon the point of observation r e [points rs~ and r e are 
connected by equations (1) and (6) and Ys~ = YeZ~/Zs; 
tan ~, = yF/ZF]. 

Thus, intensity In(re) in the case of polychromatic 
radiation can be found by determining the distribution 
of fields EJ, tm(xq, re) for the monochromatic wave. The 
formation of an X-ray moir6 pattern by monochromatic 
radiation has been investigated by many authors. It is 
known that the contrast of the interference pattern 
depends on the character of the interferometer de- 
flection from the ideal one, on the total absorption 
value, and so on. Below, we shall assume the interfer- 
ometer to be strongly absorbing. Such an assumption is 

usually well justified in experiment; for instance, 
Pinsker (1974) considers a silicon interferometer with 
#T = 22 (~t is the linear coefficient of the X-ray 
photoelectric absorption) as a typical example.* A 
calculation of fields E~(II)(xq, re) i n  the strong-absorp- 
tion approximation is presented in Appendix A. It is 
carried out on the basis of a generalized dynamic 
theory (Takagi, 1962; Indenbom & Chukhovsky, 
1972). 

As follows from equation (A.17), in this approxi- 
mation we obtain: 

i E~XI) (Xq, re) 12 = ixnl21p~(xq,rv)121p2(xq, re) I z 

x exp [--(xq ¥ Ab tan 8/cos V)2/A2]. 

(9) 

Here Pl(xq, re) = Pl(2 ,T /cos  el) and P2(xq, rp) = 
P2(2,zI/COS ~) [see equations (A.5b) and (A.7)i values 
8 and 2 in Pl(2 ,T /cos  ~) and P2(2,zl/cos ~,) are deter- 
mined by the coordinates of the observation point r e 
and the variable xq]; A o is determined by equations 
(A.12) and (A.5) and equals ( 2 T s i n 2 8 / n l x " l c o s 8  
COS I//) 1/2 [ ~ t  is the imaginary part of Z = (ZhZh) v2, 
where Zn and Zh are the h and h Fourier expansion 
coefficients of the crystal polarizability]. 

It can be seen from equation (9) that the intensities 
of wavefields E~, and E~, t have significant values in the 
r e g i o n  [Xq ~ Abtan 0/cos ~1 < A o only. It follows, 
therefore, that the range of wavelengths ~2, whose 
intensities are summed at each point r~ is limited: 

z12/}~ ~_ 2(A o cos~ + IAbl tan 8) cos 2 8/Izsl tan 8, (10) 

where ~. is the mean value of 2 for this range; 2 is deter- 
mined by equation (6) at xq = 0. When Lz31 < A o cot 8 
the total spectrum of radiation diffracted by the inter- 
ferometer is summed at each point of the film upon 
which the diffracted beam is incident. With Iz31 
increasing, the ratio d2/~. decreases. Usually, Izal >> 
A o cot 8 and d2/~..~ 1. For instance, for the reflection 
220 of Si at A o ~_ 200 gin, Ab ~_ 0, Izal ----- 500 mm, 
c o s ~ _  1 ,2_~ 1.54 /~.42/J. is 1.5 x 10 -3 (for com- 
parison, the value of.42/2 for the characteristic Cu Kal  
line at the height 1/e is 0.4 x 10-3). This means that 
when Izsl >> AoCOt8 the functions a(xq, rF), IXnl, 
IPl(xq, rf)l and LPE(Xq, rF)[ m a y  be thought of as 
constant within the variation range Ixql < Ao + ~b tan 
8/cos ~, and may be put before the integral. Taking the 

*Employment of a strongly absorbing interferometer is 
accounted for by the fact that with absorption decreasing (de- 
crease of/iT), the contrast of the moir6 pattern becomes worse. 
In the case of a transparent interferometer with #T < 1, the fringe 
contrast for any moir6 pattern is no better than 50% (Hart, 1968). 
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above into consideration, equation (8) can be written as 
follows: 

c o  

2 2 I h ( r e ) = Q ( r e )  f exp(--xq/Ao)  
- - c o  

× [ 1 + exp (--Ab 2 tan 20/A2o cos 2 ~,) 

x cos O(xq,re)ldx q. (11)* 

Here Q(re) = (c /4nmxmy)o(O,re) lZhlZlPl(O,rF)l  2 x 
[ez(O,re)l 2 is a slowly varying function depending on 
the geometry of the experiment and on ~. of the wave 
incident upon the observation point re; • = arg {EIJ  
E~ I } is the phase difference between interfering waves. 

Formula (11) gives a complete description of the 
polychromatic interference pattern. This pattern is 
defined by the parameters Ao, ab and O, depending 
on the experiment geometry, the character of the 
interferometer deflection from the ideal one, and so on. 
Let us analyse equation (11), and estimate coherent 
properties of polychromatic beams and compare them 
with the coherence of the quasi-monochromatic 
radiation of spectral lines under the same experimental 
conditions, and finally derive the formulas defining the 
contrast of interference fringes. 

2. Coherence of X-ray beams diffracted by the 
LLL interferometer 

In optics spatial and time coherences are considered. 
The concept of time coherence is well illustrated by the 
experiment with the Michelson interferometer. A light 
ray radiated by the point source divides into two 
beams. These two beams converge again with the path 
difference equal to ca r, where d r is the time difference 
between beam paths I and II. The phases of interfering 
waves become different and depend on the cyclic 
frequency of radiation 09(0 = og~r). Provided that the 
radiation is not monochromatic, the interference 
patterns for different wavelengths are displaced with 
respect to one another. In order to observe the inter- 
ference from this source it is required that A o3A r < 2n; 
here 3o9 is the spectral width of the radiation. The 
concept of spatial coherence is usually illustrated by the 
Young experiment, in which the two pinholes are illumi- 
nated by an extended monochromatic source. The rays 
from different points of the source reach the observation 
point following different paths, so that the interference 
patterns produced by different points of the source are 

shifted with respect to one another. The total inter- 
ference pattern is observed only if these shifts are small. 

In the case under consideration the interfering fields 
V~ and V~ z at the observation point are formed, as was 
the case in the Michelson experiment, by summing the 
fields E~ and E~ I from waves with different wavelengths 
located in the range defined by equation (10).* The rays 
for each wavelength trace different paths in the inter- 
ferometer, as well as in the case of the Young experi- 
ment with an extended monochromatic source. It is 
easy to see that here the region of the width 2Ttan  e,,/ 
I mxlcos ~, on the surface of the first wafer of the inter- 
ferometer [see equations (1) and (6)] plays the role of 
the size of the source. Each point in this region is a 
source of monochromatic radiation, its wavelength 
being defined by equation (1) and changing from point 
to point. Thus, when using a point polychromatic 
source, the experiment under consideration with the 
X-ray interferometer is analogous to the Young inter- 
ference experiment in which the radiation wavelength 
would smoothly vary from point to point of the 
extended source. 

The analogy drawn between the above mechanisms 
of the interference-pattern formation and also the 
estimation of the range of wavelengths summing at 
each point of the interferogram at [zAI ~ A o cot 0 allow 
one to conclude that the conditions for the poly- 
chromatic moire-pattern formation are close to those 
which have been derived for the monochromatic 
extended source by Bonse & te-Kaat (1971). 

Let us now estimate the degree of the time coherence 
of interfering beams. It is required that 3og.Ar should 
be > 2n for the interference to vanish when summing 
different wavelengths (as a result of insufficient time 
coherence). The refractive index for X-rays differs 
only slightly from unity (IAnl < 10-5); therefore, in 
order to obtain a noticeable optical path difference 
between beams I and II a thick wafer should be placed 
in one of the beam paths. Let us estimate the wafer 
thickness (tw) required for eliminating the coherence 
of fields V~ and V~ I. Using equation (A.19), the 
variation range xq for interfering waves (Ixql < A o -- 
lab1 tan 0/cos ~ _< Ao) and Ar = Antw /ecos  gt we obtain 
tw > 21z31 tan O/IAn IA o cos 2 0 cos ~. At Iz3t = 500 mm, 
A o = 200 lam, 2 ~- 1-54 A, IAnl _~ 10 -5, reflection 220 
of S i t  w > 2 cm. From this estimate it is clear that the 
time coherence of interfering waves in this experiment 
may always be assumed to be sufficient, the dependence 
of • on r may be omitted, and the contrast of inter- 
ference fringes may be considered to be caused by the 
degree of spatial coherence, as in the interference 
pattern in an X-ray interferometer formed by the 

* In this equation we have taken account of" the fact that * Fields V~, and Vi I are determined by g~(II)(rF) = .rooo~ E~ (11) 
:~oo exp [--xq ¥ ,ab tan 0/cos ~)2/A~] dxq is independent of Ab. (xq, rv) dx o. 
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extended monochromatic source, the effective size of 
such a source being equal to 2Ttan  e,,,/Imxl cos gt. 

To determine the contrast of interference fringes the 
visibility function is usually used (Born & Wolf, 1964): 

V = ( / m a x  - -  Imin)/(Imax + Imin)" (12) 

Here /max and Imi, are the maximum and minimum 
intensities of the neighbouring extrema of the function 
Ih(rv). At v = 1 the contrast of the fringes is at a 
maximum, but if v = 0, the fringes are absent. 

By analysing equations (A.18) and (A.13) one can 
conclude that the phase difference of the interfering 
beams E~, and E~, t is linearly dependent on the variable 
xq. This property permits q~(Xq, rF) to be represented 
in the form: 

t0(xq, rp)-- q~(rf) + q~2(rv)xq, (13) 

where ~ ( rv )  = ~(0,rF) and q~E(rF) = 0~(0,rF)/0X q. 
For instance, (see § § 4 and 5), for the rotational moir6 
pattern q~ = q~l = A-~YF, for the dilatational moir6 
pattern qJ~ = A ~ x F  and q~2 = Adl( 1 + m x -  mxG/T) ,  
and for the interference pattern of the defocused inter- 
ferometer q~2 = constant x Ab(rt) (here A's are the 
periods of moir6 fringes). 

Representation of ~(xq,rF) in the form of (13) 
permits one to obtain an analytic form for both the 
linear density of intensity Ih(rf) and the visibility func- 
tion v. Inserting equation (13) into equation (11) and 
using the tabulated integral (Dwight, 1961), 

oo 

f exp (--ax 2) cos B x  dx  = (n/a) ~/2 exp (-BE/4a), 
--OO 

we obtain 

Ih(rr)=Q'(rv)[1 +exp( -~2 )cos  q~(rF)], (14) 

where Q'(rF) = zcU2AoQ(rF) and ~ 2  = (db tan 0/ 
A o cos 9') 2 + (Aoq~2/2) z. The equation obtained des- 
cribes the intensity distribution in the interferogram for 
the majority of experimental situations. The function 
Q'(rr) defines the general form of the distribution 
Ih(rv). Variation of function ~ l ( r F )  leads to the appear- 
ance of polychromatic moir6 fringes, the distances 
between them being determined by the condition 
~P,(r~) - -  ¢iDl(r~. ) = 2 ~ r  ( N =  1, 2, 3, ...). 

It follows from equations (12) and (14) that the 
visibility function has the form 

v = exp (--~2). (15) 

It can be seen from equation (15) that the visibility of 
polychromatic interference fringes depends on the 
parameter (. With ~ increasing the contrast of the 
fringes rapidly deteriorates. Condition ~ < 1.5 may 
serve as a criterion for observing the moir~ pattern 
(a t f f=  1.5, v ~_ 0.1). 

The problem considered is similar to that of the inter- 
ference-pattern formation when using a monochromatic 

source extended along the OX direction. In this case, 
on the assumption that the intensity of the source 
radiation p(~c:) does not in practice change at distances 
of the order of 2A o, the interference pattern on the film 
is also described by equations (14) and (15), where 
Q(rF) = (c/47~my)lXh121p~ IZlPzlZp(x F -- z 3 tan 0/cos ~,) 
and xq = x F - x: - z 3 tan 0/cos ~. It should be noted 
that the expression obtained for the visibility function 
(15) differs from that derived by Bonse & te-Kaat 
(1971) for an extended monochromatic source on the 
assumption that E~ and El, I are constant in the range 
Ixq ¥ ztb tan 0/cos ~,1 _< Ttan  era~cos q/ and are zero 
outside it. A comparison between the theoretical and 
experimental results of Bonse & te-Kaat relating to the 
fringe contrast of the defocused interferometer and the 
theoretical results obtained in the present work are dis- 
cussed in § 4. 

Let us consider examples of the application of the 
above equations for the analysis of a polychromatic 
moir6 pattern and find the view of the interference 
patterns for the case when all the deflections of the 
interferometer from the ideal one refer to the A wafer 
only. 

3. Moir6 pattern of a focused interferometer 

In the case of a focused interferometer Ab = 0, and, 
therefore [see equations (A. 18) and (14)]: 

q~(xq, rp) = arg {Y.ffZhA } + ( (p i  _ ~0ii) ,  

ff2 = 0.25 Ao2[ c~ cP(0,rr)/cSxq] 2. (16) 

Here Zh corresponds to the first two wafers of the 
interferometer, Zu to the last. The value of q~ - ¢n is 
defined by variation of the conditions of the Bragg 
reflection in wafer A for the fields E~ and E~ i [see 
equations (A.13) and (A.14)]. In a focused interfer- 
ometer the moir6-fringe spacings and their contrast 

I II depend on arg{E f fEh}  ---- ~ ( X q ,  rF) only. Below, the 
connection between the main type of interferometer 
deflection from the ideal one and the moir6 patterns 
observed is determined, and the moir6-fringe spacings 
A and their visibility v are calculated. 

(a) Translational moird pattern 

Suppose wafer A is displaced as a whole for a 
distance At. At such a displacement the structure 
amplitude of reflection, and, consequently, the value of 
Z~, vary by the phase factor exp[--i(h,~r)], where h is 
the vector of the reciprocal lattice (h = 2n/du). Con- 
ditions of the Bragg reflection in wafer A do not vary 
and q~ = (h~r). This means that in displacing the 
analyser (wafer A) in the direction of the reciprocal- 
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lattice vector for the given reflection, the intensity In(re) 
for any observation point r e oscillates with the period: 

Atr  = d h. ( 1 7 )  

For a translational moir+ pattern, q~ is independent of 
xq and r e, therefore Vtr = 1 even at the point where the 
polychromatic beams focus, q. 

(b) R o t a t i o n a l  m o i r 6  p a t t e r n  

Let us turn the analyser by a certain angle Y with 
respect to the axis parallel to the normal to the inter- 
ferometer wafers. Once y ,~ 1, then )ChA changes by the 
factor exp {i[(ahrAz) + ~0o]} = exp[ i (hyyaz  + ~0o)] (here 
phase ~0 o is related to the position of the rotation axis 
relative to the interferometer). Angular parameters 
a t and an for both interfering fields remain equal and 
~01 -- (0 Ix [see equations (A. 14) and (A. 13)]. Thus, using 
equation (4), we obtain q~ = - -hTmj~YF + 0%. On the 
film there may be observed the fringes in parallel with 
the OX direction with the spacing Av: 

A v = mydh/7 .  (18) 

For the rotational moir~ pattern, as well as for the 
translational one, the focused interferometer is an 
achromatic device as • is independent of xq. So, v v is 
equal to 1 at any point r r 

(c) D i l a t a t i o n a l  m o i r d  p a t t e r n  

Suppose the lattice spacing of the analyser differs by 
a quantity ,~d h from that of the rest of the wafers of the 
interferometer. Then arg {,~h/ZhA } = --(A hra2) + q~o (here 
phase q~o is related to the 'origin' of deformation), and 
(pl  __  (p I I  = ( A h t A / T ) ( x A 2  + z l  tan 0 + Ttan  0) [see 
equations (A.14) and (A.13)]. Replacing ra2 by r F and 
using equations (4) and (6) we obtain q~ --~ --(z tdh/  

d~,)mx~[Xv - (1 + m x - m x t a / T ) x  q] + ~Po. On the film 
there appear moir6 fringes parallel to the OY direction. 
The spacing of these fringes, A d, is determined by the 
coefficient before x~- and is :* 

A a = I mxl  dE/IAdhl .  (19) 

The visibility of dilatational moir+ fringes depends on 
the coefficient before xq and is [see equation (15)]: 

Vd=eX p {--[(1+ m x -  m x t A / T ) A o / 2 A d ] Z } .  (20) 

From equation (20) it follows that the moir+ pattern is 
seen under the condition: A a > 0-33(1 + m~ - m x t  J 
T ) A  o. This condition limits the value of A d  h. At 
m x = 1, A o = 200 jxm, t a / T  = 1/3 A d h / d  h < 1.8 d h / A  o "~ 

2 x  10 -6. 

* The spacing of  dilatational fringes in interferograms obtained 
with a point polychromatic source at Imxl = 1 coincides with that 
obtained with a monochromatic  source extended in the OX 
direction. 

(d)  I n t e r f e r e n c e  p a t t e r n  o f  the  p h a s e - s h i f t i n g  ob jec t  

Let us put a thin plane-parallel wafer of thickness 
t w in one of the interferometer beams parallel to the 
interferometer crystals. This wafer introduces the phase 
difference q~ = zrXo tw/~.cos 0 cos ~ = 2zc)(.otwdh(X F --  
xq)/2Zz3 between the interfering waves E~ and El, ~. On 
the film there appear moir6 fringes parallel to the OY 
direction with the spacing:* 

A w = I mxb z 122/)~otwdn . (21) 

As in § 3(c), q~ depends on xq(q~ 2 = Aw 1) and 

v w = exp [ - (Ao /ZAw)2] .  (22) 

The condition for observing the moir6 fringes caused 
by the phase-shifting object is A w > 0.33A o. Note that 
the thickness of this object should not exceed that 
which introduces a larger optical path difference than 
the coherence length of the diffracted radiation mono- 
chromatized by the interferometer. 

Let us compare the results obtained {Atr = d h, 
/)tr = 1; A v = mydh/Y ,  v v = 1; A a = I m x l d f f l A d h  I, 
v a = exp[--(1 + m x - -  m~ta/T)ZA2o/4A~]; and A w = 
ImxlZ~22/I zoldhtw, v w = exp[- - (Ao/2Aw)2]}  with those 
known for the case of monochromatic plane waves. 
As follows from the theory of electron-microscopic 
moir6 patterns (Gevers, 1962), the fringe spacings and 
the fringe visibilities for the main moir~ types are 
defined by the following expressions: Atr  = dh, Vtr = 1; 

A v = d h / Y  , V v = 1; A a = d f f l A d h l ,  V d = 1; and A w = m ,  
v w = O. The fringe spacings for rotational and dilat- 
ational moir~ patterns for the case of plane waves differ 
from the corresponding expressions for the poly- 
chromatic moir6 pattern owing to the divergence of 
polychromatic diffracted beams in both the OX and 
OY directions. The difference between the dilatational 
moir6 pattern visibilities is because in the case of poly- 
chromatic radiation the different wavelengths are 
summed at the observation point with different phase 
relations between the interfering waves. A variation in 
the wavelength in the OX direction leads to the appear- 
ance of moir~ fringes caused by a phase-shifting object 
even if it is a plane-parallel wafer. 

Thus, in a number of cases the fringe spacings and 
the fringe visibilities of the X-ray polychromatic moir~ 
pattern differ from those of the monochromatic moir~ 
pattern in plane waves and are dependent on both the 
misalignment type and the experimental geometry.t 

* In the case of  a monochromatic  source fringes will appear 
on the film parallel to the OX direction; these are due to a change 
in the angle v/with a change in diffraction planes and in the case of 
monochromatic  plane waves A w = oo. 

I" There is a more general statement in Shulakov & Aristov (1978) 
on the dependence of  the fringe spacing and fringe visibility of  an 
X-ray moir~ pattern on the type of  misalignment, the experimental 
geometry, the source size and the spectral composition of  the 
radiation. 
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The problem concerning the effect of defocusing on 
the moir6 pattern is of importance for an experimental 
observation on a polychromatic moir6 pattern; §4 
deals with this problem. 

4. Interferometer with distorted focusing 

We have already mentioned that there is an analogy 
between summing the intensities of the waves radiated 
by a polychromatic point source and in summing those 
radiated by a monochromatic extended source. As was 
shown by Bonse & te-Kaat (1971), in the defocused 
interferometer the contrast of interference fringes fades 
mainly because the rays incident at an observation 
point from different source points have different phase 
relations between interfering waves. 

The same thing occurs in the present case, since the 
phase relations between the interfering waves E~(2,rF) 
and E~,I(2,rF) are different for the different wavelengths. 
The phase difference ~ for the defocused interfer- 
ometer is always dependent on xq, even in the absence 
of other misalignments. This circumstance gives rise to 
fading contrast of the fringes. In particular, for the 
translational and rotational moir6 patterns and for the 
defocused pattern caused by a change of Ab the 
parameter 42 does not equal zero, and the visibility 
function is determined by [see equations (14) and (15)]: 

v =exp[--(r / /2)  2 -  (Ab tan O/A o cos ~)z], (23) 

where r /=  02A o = (2z~bAo/ loT  tan 0) and l o = 2 cos 0/ 
IZI is the extinction distance. The term zbtan O/AoCOS 
in equation (23) appears to result from the fact that at 
zJb 4 :0  the interfering wavefields overlap only partially. 
This overlap and, consequently, the wavefield coherence 
vanish at IAbl > A o cos ~/tan 0. If the fringe visibility 
should be determined by overlap of beams E~(2,r F) and 
E~I(2,rF) only, then for the example considered the 
defocus value could reach 440 ~tm (this case corres- 
ponds to the experiment with a point monochromatic 
source). The effect of the parameter r/turns out to be 
more important, since for any defocus ztbtan 0/ 
AoCOS ~, = r/Iz"I/21ZI ,~ r/, and the visibility function 
(23) has the form: 

[ 
v = exp L-- -4- 

The approximate expression of equation (24) is v = 
exp (--~/2/4). 

From equation (24) it follows that the fringe visibility 
decreases by e times at 

t~b[ ~_ l o T t a n  O/ltA o. (25) 

Condition (25) defines the requirements for the 
accuracy of interferometer manufacturing. For in- 
stance, for the interferometer considered and the 

wavelength 2 ~_ 1.54 A the accuracy of manufacturing 
should be such that Idbl < 17 ~rn. At larger values of 
I Abl the interference pattern is not observed in practice. 

It has been noted above (§2) that the expression 
for the visibility function (15)of  polychromatic fringes 
is also valid for the case of an extended monochromatic 
source. Therefore, it is of interest to compare the depen- 
dence of v(ztb) with the theoretical and experimental 
results of Bonse & te-Kaat (1971). In the theory 
developed by them it was assumed that the intensity 
distribution of a coherent wavefield on the exit inter- 
ferometer surface has the form 0 ' (T tan  e m - Ix,~l) (here 
0' is the Heaviside step function being equal to unity 
at a positive value of the argument and to zero at a 
negative value; xq is the distance between the obser- 
vation point r e and the centre of the coherent wave- 
field). In this approximation, the visibility function is 
described by 

I sin [r/'(1 - ztb tan O / T t a n  em)]l 
v'(,~b) - , (26) 

r/' 

where r/' = 2n~b tan em/l o tan 0. A comparison between 
v(,~b) and v'(Ab) shows that the visibility function is 
markedly dependent on the form of the distribution 
I E~<m(xq, rF)l. This difference is especially evident at 
large values of the parameters r/and r/'. It is known that 
in the case of weak absorption (ltT < 1) the intensity 
distribution on the exit surface of a crystal is a com- 
plicated oscillating function of xq. At /tT > 5 the 
oscillations practically disappear, and at /~T > 40 the 
distribution I E~ tm(xq,rp) l 2 is well described by the 
Gaussian function [see equation (A.17)]. It follows 
from the above that expression (24) is precise at large 
#T, and it describes the fringe visibility with a certain 
approximation at 5 < /~T < 40. The approximation 
used by Bonse & te-Kaat is less precise at a n y / t T  and 
can, therefore, be used for the estimation of the inter- 
ference-pattern visibility at small values of the para- 
meter r/' only (at r/' < zr/2).* Thus, for instance, 
expression (26) predicts the presence of the visibility- 
function oscillations with an increase of r/'. As can be 
seen from (24) this effect is a result of the approxi- 
mation used and cannot be observed in the experiment 
(at least, a t / tT  > 5). 

Fig. 3 represents the theoretical curves v(db)  and 
v ' (z lb)  and the experimental data by Bonse & te-Kaat 
(1971) obtained for a silicon LLL interferometer with 
T =  831 ~ a  (/~T___ 12.7), for Cu K a  radiation, the 220 
reflection and cos ~' ~ 1. It can be seen that at large 
values of r/' the experimental points are closer to 
dependence v(zlb) (curve 1) than to dependence v'(zlb) 
(curve 2). The second and subsequent maxima of v' (zlb) 

* This estimation is obtained from the Rayleigh criterion and 
the relation: arg {E~(--Ttan e=,rF)/E~X(Ttan e=,re)} = ~/'. 
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are not experimentally observed, in accordance with 
function (24). 

Thus, a polychromatic interference pattern should be 
observed under the same conditions as in the case of a 
monochromatic extended source, and the requirements 
for the accuracy of interferometer manufacturing are 
not very strict. 

So far, the term 'point source' has been used by us 
in a mathematical  sense. A physical source has real 
physical dimensions. Evidently, when using an ex- 
tended polychromatie source the interference pattern 
becomes diffuse and when the source dimensions are 
large enough, it will vanish. In the next section, an effect 
of the source extension on the fringe contrast will be 
considered, and the requirements for source dimensions 
at which the pattern observed does not markedly 
change will be established. 

5. Influence of source dimensions on the 
fringe contrast 

We shall now determine the intensity distribution 
formed on a film in the case of an incoherent extended 
polyehromatic source. Let p(r:) describe the source 
luminosity at a point rf, and isolate in the vicinity of r: 
a small volume whose dimensions are much less than 
A o. On the film this quasi-point source will be accounted 
for by an intensity distribution dI~'S'(r~re) = 
p(r:)I~'S ' (r: ,rF)dV:,  where I~ .s" is Ih(re -- r:) and is 
determined by equation (14) (here the abbreviations e.s. 
and p.s. are extended source and point source, respec- 
tively). The total intensity distribution produced by all 

1.0 
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' ~ i  b) 
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• , , ~ 
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Fig. 3. Theoretical and experimental dependences of the fringe 
visibility as a function of a defocusing ab. Curves (1) and (2) 
correspond to the expressions (24) and (26) respectively. For 
the points denoted by dark circles the value of tan e m, measured 
experimentally, is 0-116; for the points denoted by light circles 
(tan em)e~ p = 0,136. The axis of 3b (axis of abscissa) is given 
in units of r/'. The value of d o in (24) was assumed to equal 
T(tan em)~x~/(ln 2) 1/2. 

the quasi-point sources is given by the convolution of 
the functions p(r:) and Ih(rv - r:): 

I~,'S'(r e) = :  p ( r / ) Q '  (r e - r/) { 1 + exp [ - ~ 2 ( r e -  r:)l 

x cos q~1(rF-- r:)} dry. (27) 

The functions Q'(r v - r:) and ~(r e - r:) are determined 
in equations (11) and (14). As the experimental 
geometry is invariable, these functions are dependent 
on the wavelength ~,, defined by the relation [see 
equation (6)1: 

tan 0 = ( x  e - xy) cos ~ / z  3. (28) 

It follows from equation (28) that in the case of an 
extended polychromatic source ). depends on a change 
of the coordinates of the point r:{ g /=  arctan [(YF -- Y:) /  
(Z F --  Z:)] }. Consider the source with p(r:) = Po O' ( f  ~ - 
Ix/ l)  O' ( f y  --  lyyl) 6(zf)_ (here fi is the Dirac function). 
The variation range of 2 for this source is 

d 2 /2  ~_ ( 2 f x  cos 2 0 c o s  ~/Iz31 tan 0) 

+ (2v2fy cos O/ZF) 2, (29) 

where 2 is determined by equation (28) at r: = 0. 
Under the conditions 

2f~ ,~ I Z31 tan O/cos 2 0 cos ~' 

and 

2f~ ¢ 2v2ZF/COS 0, (30) 

the ratio 3~,/~ ,~ 1, and the functions Q'(r  e - r:) 
and ff(r e - r:) can be considered as constant within the 
variation range of r: and assumed to be equal to Q'(rF) 
and ~'(rF) respectively. Above, the ratio zl 2/~, has been 
estimated for the wavelengths summing at the obser- 
vation point in the case of a polychromatic point 
source. It turned out thatd 2/~, ,-- 1.5 × 10 -3. The same 
magnitude for the ratio 3 ~,/~, corresponds to an ex- 
tended source with the dimensions 2fx__~ 200 ~tm and 
2 f  r ~_ 20 mm (at z I ~ "  --Z 3 ~___ 500 mm, 2 _~ 1.54 A and 
cos ~u ~ 1). So, the conditions (30) hold for the majority 
of X-ray fine-focus sources. 

If the conditions (30) are satisfied and the first 
derivatives of ~ ( r  e - r:) change only insignificantly at 
distances of the order off~ andfy,  the phase difference 
q0~(r F - r/) in the first approximation can be repre- 
sented as 

q ~ l ( r v - - r : ) ~ - - q ~ ( r F ) + ~ a ~ ( r F ) x : +  ~2( rp )yp  (31) 

where I qbll(rF)l = 2n(m x + 1)Ax I and 1~12(rF)l = 
2n(my -- 1)A~ -1. The representation ~ l ( r F -  r:) in the 
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form of  (31) permits one to obtain an analyt ic  form of  
the visibility function:  

Lsin[2n(m x + 1 ) A x l f x ] l  
/ ) e . s .  : exp (_~2) 

2 z t ( m  x + 1 ) A x l  f x  

Isin [2~z(my - 1)A~-tfj] I 
x (32) 

2~z(my -- 1) A~ -~ fy 

Thus,  for the moir6 pat terns with cons tant  fringe 
spacing (see § 3) and also for those in which the fringe 
spacing is a slowly varying function of  coordinates ,  the 
fringe visibility depends on the source dimensions as 
Isinc [2zr(1 + z J z l ) A - l f ] l .  * This means  that  only 
those fringes are observed for which A x > 2 f x ( m  x + 1) 
and Ay > 2 f y ( m y  - 1). For  the fringes with spacings 
A x >> 2 f x ( m  x + 1) and Ay >> 2 f y ( m y -  1), an extended 
source with dimensions 2fx  and 2fy  satisfying the 
condit ions (30) can be considered as a point  one. 

So, on the base of  the above, it can be concluded 
that  moir6 pat terns can be observed with po lychromat i c  
radiation.  To verify this conclusion,  an experiment  was 
carried out, the results of  which are presented in § 6. 

6. Experimental results 

beams Eoo h and Ehh h (these beams are not  shown in 
Figs. I and 2) and the pr imary  beam.* Besides, slit 2 
permits a considerable diminut ion of  the level of  the 
incoherent  background  of  the pr imary  radiat ion 
scattering by the S, M and A wafers of  the interfer- 
ometer.  

Fig. 4 shows a pho tograph  of  the pat tern obtained 
in the scheme of  Fig. 1 wi thout  slit 2, z~ ~_ z 3 -~ 100 mm. 
The photograph  distinctly exhibits the beams Eooh, 

Eoh h + Eho h and Ehh h corresponding to diffraction of  the 
character is t ic  A u L a  radiat ion (;t _~ 1.28 A). The 
spacing of  moir6 fringes in the beam Eoh h + Eho h is 
0.5--4 mm. Alongside the line of  character is t ic  
radiat ion,  the diffraction background  is also visible; it is 
caused by scattering of  the po lychromat ic  spectrum in 
all the wafers of  the interferometer.  

Having set up slit 2 for removing the diffracted 
beams Eoo h and Ehh h, and after exposing for an ex- 

* In practice, for any LLL interferometer, slit 2 can be used 
to separate the beam Eoa a + Eao a from the beams Eoo a and Eha n. 
This is because beams Eoo a and Ean a are focused in other planes 
with z = constant (z = 2z~ + 2z L and z = 2z~ + ts) and under the 
condition Zl. tan 0ml n > A o they do not overlap with beam Eoa a + 
Eao a in the region of slit 2. This is impossible for beams Eoo o, Eoa o + 
Eao o and Eaa o and thus they have no focusing points. 

A symmetr ic  LLL interferometer  with 220 reflecting 
planes has been made from a Si single crystal.  Its 
characterist ics are: b~ ~_ b 2 ~- 10 mm, t s ~_ t M ~_ t A ~- 

0-8 mm, T --, 2.4 mm, 1,4 bl <~ 20 prn. The experiment  
was carried out with a 'Microflex '  microfocusing X-ray  
generator.  The radiat ion of  a gold anode in the range 
of  wavelengths 1 . 2 - 1 . 4  A was used; the focus 
diameter  did not  exceed 20 lam. In the range of  wave- 
lengths 1 . 2 -1 .4  A, A o ~_ 2 7 0 - 2 5 0  ~tm, 2~zlx"IT/ 
2 cos 0 ~- 17-27,  (tan 0 / tan  era) 2 ~ 10. Thus,  all the 
results obtained above may  be applied to this inter- 
ferometer.  

The geometry of  the experiment was in accordance  
with Fig. 1 (z 1 = 100-150  mm, z 3 = 5 0 - 3 0 0  mm) and 
was very similar to that  of  Aristov,  Shmytko  & 
Shulakov (1977b). In order to decrease the background  
of  radiat ion scattered by various elements of  the experi- 
mental  scheme the pr imary  beam divergence was 
limited to 4 - 6  o by slit 1. In the vicinity of  the points 
q (x = 0, z 3 = 0) the beams Eoh h + Eho h (E~ + E~h I in 
the other designation) of  different wavelengths are 
focused in the nar row band about  2 A  o wide parallel to 
the OY direction. Slit 2 placed in the locat ion of  the 
focal band fully t ransmit ted the beam Eoh h + Eho h (the 
slit width was 1 mm) and protected the film from the 

* An analogous expression can be obtained for an extended 
quasi-monochromatic source. In this case, the parameter f will 
act as a spectral radiation width. 

Fig. 4. Topographic image produced by the LLL interferometer 
with an X-ray divergent polychromatic beam. Images of S, M 
and A wafers of the interferometer are formed by the continuous 
spectrum. The light lines are related to the characteristic 
radiation Au Ltl (2 ~_ 1.28 A) and correspond to the diffracted 
beams: E n on the S wafer, Eon and Ehn on the M wafer, 
Eoon, Eon h + Eho n and Enal, on the A wafer (the second weak line 
on the S wafer corresponds to Au L r/ radiation with ,i. ~_ 1.4 A). 
The beam Eoa a + Eho a depicts interference between the wave- 
fields I and II. The slight shifts between the beams E a, Eat ' and 
Ena n and also between Eoh and Eoh a + Eao a are due to the 
narrowing of wavefield angular width in the interferometer 
wafers. 
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tended time we succeeded in obtaining a moir6 pattern 
with polychromatic radiation in the wavelength range 
1.2-1.4 A. The photograph of the moir6 pattern ob- 
tained is shown in Fig. 5. The polychromatic moir6 
fringes are almost parallel to the interferometer foot 
and intersect the moir6 pattern on the line of charac- 
teristic radiation at the maximum intensity points. 
When the distance z 3 was changed the fringe spacing 
varied in accord with a change of the geometrical 
magnification coefficients m x and my. The fringe con- 
trast is smeared, since the interferometer is defocused 
(at IAbl ~ 20 lam, v ~_ 0.37) and slit 2 does not permit 
one to eliminate completely the incoherent background 
caused by the primary X-ray beam scattering by the 
interferometer wafers (this mainly refers to wafer M). 

Thus, the experiment shows that interference 
patterns can also be observed with continuous X- 
radiation. This is because an X-ray LLL interferometer 
is a special device in which the coherence of the inter- 
fering beams is mainly determined by the parameters 
of the experimental scheme and the device itself, and 
less importantly by the characteristics of the radiation 
employed. 

Conclusion 

The X-ray interferometer has been shown to permit 
an interference pattern to be obtained with poly- 
chromatic radiation. Under the condition Iz31 ~ T, the 
visibility of an interference pattern does not depend 
essentially on the spectral composition of the radiation, 
and if the physical dimensions of the point source are 
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Fig. 5. Polychromatic moire pattern of the interferometer. The 
overexposed light line corresponds to Au Ltt radiation. 

small as compared with the spacing of the fringes 
observed, the fringe contrast is determined by the same 
parameters as in the case of an extended monochromatic 
source. The spacing of polychromatic fringes for a 
number of cases differs from those of optical and 
electron-microscopic moir6 patterns and the X-ray 
moir6 pattern with monochromatic radiation due to the 
divergence of diffracted beams in both the OX and 
OY directions. 

The theory developed in this paper may be applied to 
the analysis of the operation of the LLL interfer- 
ometer at any spectral composition of radiation, in- 
cluding quasi-monochromatic radiation of spectral 
lines. In the last case tr(2) is a rapidly varying function 
and cannot be put before the integral in equation (8). 
The shape of the spectral lines of the non-laser 
radiation is sufficiently well described by the Gaussian 
function. This means that while the point source of 
quasi-monochromatic radiation is used the intensity dis- 
tribution in the interferogram and the visibility of inter- 
ference fringes are described by equations (11), (14) 
and (15), as is the case with polychromatic radiation, 
provided parameter A o is substituted by A* in all ex- 
pressions except ~b tan O/Ao cos ~' describing beam 
overlapping. This parameter is connected with A o and 
with the spectral width of the characteristic radiation 
A2/~. by the following expression: A* = AoAa(A2o + 

/I]) -1/2, where A a ~_ (z12/,~)(Iz31 tan 0/cos 2 0). Inserting 
values ~ 2/2, 8 and A o for the 220 Si reflection of the 
Cu Kct radiation and assuming Iz31 to be 500 mm, we 
obtain A* _ 65 lam (A o _ 200 lam). 

It is to be supposed that for some cases the inter- 
ferometry scheme with polychromatic radiation may 
turn out to be more advantageous than those with a 
quasi-monochromatic source. For instance, the scheme 
of a translational moir6 pattern is more 'apertured' on 
using a wide spectrum of radiation; it is also of interest 
to employ polychromatic radiation for determining the 
dependence of the crystal refractive index for X-rays on 
the wavelength near the absorption edges of the element 
and, also, for developing an X-ray phase-contrast 
microscope with a geometrical magnification and 
resolution to 1 lam (Aristov, 1978) on the basis of an 
LLL interferometer. 

A P P E N D I X  ,4 

Diffraction of  a monochromatic  wave in an absorbing 
LLL interferometer 

The wavefield at a distance r from the point source of 
non-monochromatic radiation may be represented as a 
packet of monochromatic spherical waves, E~(2,r): 

al(2) 
E t ( 2 , r ) = ~ e x p [ i ( k r  - wr)]. (A.I) 

4ztr 
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Here a~(A) is the Fourier component of expansion of the 
ith elementary act of radiation of monochromatic 
waves; k is the modulus of the wave vector equal to 
2zt/2; 09 is the cyclic frequency; and z is the time (in 
what follows the time dependence is omitted). 

Let us calculate the field resulting from diffraction of 
each of the monochromatic waves Ei(,;t,r) in a sym- 
metric strongly absorbing interferometer of the LLL 
type (see Fig. 2). 

The generalized dynamical theory of X-ray scattering 
by perfect crystals based on Takagi's (1962) equations 
is used in an analysis of diffraction of the waves 
Ei(2,r) in the interferometer. According to this theory 
(see, for instance, Indenbom & Chukhovsky, 1972) in a 
two-wave approximation the space-inhomogeneous 
field E(2,r) in the crystal may be represented as two 
packets propagating in the direction of the incident 
(index o) and diffracted (index h) waves: 

E(~.,r) ~ Eo(2,r)e i(ko~) + Eh(~,,r)e i(k~), (,4.2) 

where Ikol = 2zt/2, k h = k o + h, and Eo(2,r) and Eh(2,r) 
are slowly varying functions of the coordinates which 
are defined by the influence of the fields E~ at the 
points r' upon the field E~ at the point r: 

El(2,r) = f Gu(2, r -- r') Ej(A,r') dr'. (A.3) 
c 

Here i, j = o, h; G U is the influence function obtained 
by Slobodetsky, Chukhovsky & Indenbom (1968) and 
Authier & Simon (1968); the vector r -- r' is in the 
reflection plane; and integration proceeds along the 
contour C restricted by characteristics of the Takagi 
equations. 

In the case of strong absorption at 2~zlx"lT/ 
/l cos 0 >> l, the asymptotic expression for the influence 
function is:* 

Goo ~- Ghh ~-- --xG, 

Gho ~ Zk G and Goh ~_ )(.~ G, (A.4) 

where 

G(2, r - r') = P1 (2, 
\ 

z - z ' )  exp { k ( x - x ' ) _ i  
cos ~ 4 sin 0 

× [. + c°s 
(z - z') tan 0 ] } (A.5a) 

* We neglect the f-like singularities in functions Goo and Ghh (J is 
the Dirac function), since they correspond to the kinematic approxi- 
mation of the diffraction theory and are essential only for the 
crystal thickness of the order of lo/2 V/2Zc = 1-10 ~tm. 

and 

(zz t 4[ ] PI 2, = exp (izff4) 
cos ~' ztX sin 20(z -- z ')  

x e x p [ - i k ( z - z ' ) ( a + 2 Y ' ° - - 2 X n ) ]  " 4  cos 0 cos v/ 

¢A.Sb) 
Here X = X' + ix" = (;th2~D 1/2, Z" < 0; a = ( k ~ -  k2)/ 
k 2 is the angular parameter equal to 2A0 sin 20, where 
A0 is the deviation from the Bragg angle O; ~' = 
arctan [(y - y ' ) / ( z  - z')] is the angle between the 
diffraction plane and the plane y - y '  = 0; and Pl(2, t /  
cos v/) is the slowly varying function of 2 (t = z - z' is 
the crystal thickness). It follows from equation (A.5a) 
that IG(2;x - x ' , t / c o s  I//)[ 2 = IPl(2,t/cos I//)12 X 
exp[--(x -- x')2/A2(t)], where Ao(t) = [2tsin2O/ 
ztIZ"l cos 0 cos v/] x/2. Further, without digressing from 
the general character of the formulation, we assume 
that cos ~ = 1 and introduce G o for the function G with 
a = 0: G ( 2 , r -  r')l~= 0 = Go(r - r'). 

Suppose the spherical wave Ei(2,r) excites a space- 
inhomogeneous field (A.2) with t~ = 0, Ikol = Ikhl = 
k = 2zc/2 in the S wafer of the LLL interferometer. In 
this case the boundary conditions on the entrance 
surface rsx(Zsl = z~) may be written in the form 
(Authier & Simon, 1968):* 

E i ( 2 ' r s ' ) = a l ( 2 ) c ° s O  [ k c ° s s O  t 
4ztz~ exp i ~  (Xsl + z I tan 0) , 

2z~ 

E~,(2,rs,) = 0. (A.6) 

On the exit surface of the S wafer, rs2 (Zs2 = z 1 + t s) 
amplitudes E / and E~ are defined by the influence of 
the field (A.6) and are expressed through equation 
(A.3). Let us consider the spherical approximation 
condition z~ ~ t s sin 2 20/2X ~- 10m to be fulfilled.~" In 
this case, the integral in (A.3) is calculated by the 
method of a steady-state phase in the vicinity of the 
point x '  ~ - z  1 tan 0: 

e'o(;t, rs9 
E~,(Lrs9 
where P2 

= -4ai(A)zP2Go(xs2 + z 1 tan O, ts), 

= 4ai(2)XhP2 Go(xs2 + z I tan 0, ts), 

= (128z&z I cos 0) -1/2 exp (ire/4). 

(A.7) 

* If cos ~, ~ 1 then in equations (A.6)--(A.19) all the parameters 
which are measured in the OZ direction (such as t s, t M, t A, T, b~, 
b2, z~ and z3) should be divided by cos ~. 

t Dynamical diffraction of monochromatic waves by a single 
crystal in the case of large distances (~t sin 2 20/229 between the 
source and the observation point has been considered theoretically 
by Afanasjev & Kohn (1977) and experimentally by Aristov, 
Polovinkina, Shmytko & Shulakov (1978). 
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Let us assume that the wavefield in the air gaps 
between the interferometer wafers is also determined 
by equations (A.2) with a = 0 t  and by the influence 
functions Goo = J ( z  tan 0 + x ) ,  Ghh = fi(Z tan 0 -- x), 
Gho = Gob = 0. Thus, after passing the air gap b I the 
waves E~ and E~ reach mirror M ( z n ~  = z~ + t s + b~) 
with the displacements -b~ tan 0 and b~ tan 0 respec- 
tively (Indenbom, Slobodetsky & Truni, 1974): 

Ei(~,,rM1) =--4ai(~.)xP2 Go(XMI + z I tan 0 
+ b 1 tan 0, ts), 

E~,(A, rM~) = 4ai(2)XhPEGo(XM~ + z~ tan 0 

--b I tan 0, ts). (A.8)  

If we assume that wafers S and M are not shifted 
relative to each other and that their reciprocal lattices 
coincide, then the amplitudes of the fields Eioh and Eiho 
on the exit surface of mirror M (ZM2 = z~ + t s + b I + 
tM) are determined by equations (A.3) and (A.8). 
Convolutions of G o • G o in (A.3) are calculated by the 
method of a steady-state phase in the vicinity of points 
x '  = [XMEt s -- (Z 1 +_ b l ) t  M tan O]/(t s + tM):~; 

Go(XM2 --  X ' ,  tM) * Go(x '  + z I tan 0 + b 1 tan 0, ts) 

= (½,~) Go(xM2 + z~ tan 0 + b~ tan 0, t s + tM). (A.9) 

Thus 

Eioh(A'rM2) = --2ai(A)Xh P2 Go(XM2 + Zl tan 0 

+ b 1 tan 0, t s + tM), 

Eiho(2,rM2) = 2ai (2)zP2 Go(XM2 + Z 1 tan 0 

- -  b I tan 0, t s + tM). (A. 10) 

On the entrance surface of analyser A (zA~ = z 1 + t s + 
b 1 + t M + b 2 ) :  

Eioh(A, rA 1) = --2ai(2)Zh P2 Go(XAI + z l  tan 0 

--Ab tan 0, t s + tu),  

E~o(2,rA l ) =  2ai(2)zP2Go(xA~ + z~ tan 0 

+ ab tan 0, t s + tu)  , (A. 11) 

where A b = b 2 - b~ is the value of the interferometer 
defocusing. 

Suppose values Zh and h in wafer A (ZhA,hA) differ 
from the same parameters in the first two wafers. In 
this case convolutions of G * G O are also calculated by 
the steady-state phase method in the vicinity of the 
points: x '  = [xA2(t s + tM) -- (Z~ ¥ A b ) t  A tan 0 + 
#d/2)O(ts  + t M) t A tan O]/T. Finally, for Eionh and Eihoh 

on the exit surface of the interferometer (zA2 = z~ + zr) 
we may write: 

Eiohh(2,rA2) = ai(A)ZhP2Go(xA2 + z I tan 0 

- - z l b  tan 0, T)exp (i~o~), 

Ei~oh(2,ra2) = ai(,;I.)2'hA P2 Go(x~2 + z I tan 0 

+Ab tan 0, T) exp (itpn), (A. 12) 

where 

= - ( d ( k t A / 4 T c o s  6r)[xA2 cot 0 + z~ TAb + T 

- ( , t J / 4 x ) ( t s  + tM)]. (A.13) 

Here j = I, II; at j = I the upper sign (minus) is 
taken, a t j  = II the lower sign (plus) is taken; aJ is the 
angular parameter t~ for the first and second fields 
(Eiohh and Eihoh): 

a~= 2(koah)/k2o, n n =  2 ( k h A h ) / k  2, (A.14) 

where ah = h a -- h. 

Waves Eiohh and E~o h interfere on the exit surface 
of the interferometer, so that the density of the intensity 
for the ith act of radiation is determined by the 
expression: 

¢ 
8rcIEiohh + Eihohl 2 =  lai(A)121E~h + E],'i 2. (A.15) 

Here E~ = Eiohh/ai(~,) and E~ I = Eihoh/ai(~.) are 
defined by diffraction in the interferometer and are 
independent of the radiation act number. On averaging 
the intensity determined by this expression over all 
radiation acts for a long period of time, we get: 

C ~ i 2~ c E]~I,2. (A.16) IEoh h + Eihohl = a(A)lE~ + 
8 =  i ~= 

Here angle brackets denote averaging over time, and 
tr(2) = (~ilai(2)L 2) is the spectral density of the 
source radiation, the amplitude and phase relations of 
the interfering waves E~ and E~, I being determined by 
the expressions [see equations (A.15), (A.12), (A.7) 
and (A.5)]: 

I E~(II)(,;L, rA2)[ 2 = IXhl2lell21e2[ 2 

× exp [ - (xq  -T-zl b tan O)/A2o],(A. 17)* 

( E ~ ]  (Z~hA} ( G o ( x o - ~ J b t a n O ,  T ) }  
arg [, El, ~ ) = arg + arg Go(x o + 4b tan 0, T) 

+ ((~I__ (01I), (A.18)  

t Such a condition allows us not to write the boundary con- 
ditions on the surfaces of the interferometer wafers. 

:l:The applicability of the steady-state-phase method in the 
Borrmann approximation follows from the fact that far from the 
absorption edges Ix'r ,> 12'"1 and the phase rapidly oscillates 
inside the region with dimensions of the order of 2A o. 

* In deriving formula (A.17) we neglected divergence of the 
diffracted rays in the OY direction. If this is taken into con- 
sideration, the intensities of fields L E~lml 2 decrease by the coefficient 
z / ( z ,  + zL). 
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where xq is determined from equation (6) at z a = - z  1 
and equals xa2 + zt tan 0; the value A o = Ao(T) is deter- 
mined in equations (A.5) and (9). 

In calculating the amplitudes of fields E~ and E~, ~ we 
omitted the time dependence. If the phase difference 
arises when a phase object is put into the path of one of 
the beams, then fields E~ and El, ~ reach the point rA2 
at different moments of time r and Az. In this case 
an additional phase difference O(~r) = ogar appears. 
Let us express 09 through xq, then: 

O(Ar) = dgAr(1 + xq cos 30/z 3 sin 0), (A. 19) 

where 69 is the mean value of the cyclic frequency of 
waves reaching the observation point within the 
variation range I xql <~ A o. 

References 

AFANASJEV, A. M. & KOHN, V. G. (1977). Fiz. Tverd. Tela 
(Leningrad), 19, 1775-1783. 

ARISTOV, V. V. (1978). Proceedings of the Ninth All-Union 
Holography School, pp. 299-312. Leningrad: Institute of 
Nuclear Physics. 

ARISTOV, V. V., POLOVINKINA, V. I., SHMYTKO, I. M. & 
SHULAKOV, E. V. (1978). Pis'ma Zh. Eksp. Teor. Fiz. 28, 
6-9. 

ARISTOV, V. V., SHMYTKO, I. M. & SHULAKOV, E. V. 
(1977a). Acta Cryst. A33, 418-423. 

ARISTOV, V. V., SHMYTKO, I. M. & SHULAKOV, E. V. 
(1977b). Acta Cryst. A33, 412-418. 

ARISTOV, V. V. & SHULAKOV, E. V. (1975). J. Appl. Cryst. 
8, 445-451. 

AUTHIER, A. & SIMON, D. (1968). Acta Cryst. A24, 517- 
526. 

BONSE, U. & HART, M. (1965). Appl. Phys. Lett. 6, 155- 
156; Z. Phys. 188, 154-164. 

BONSE, U. & TE-KAAT (1971). Z. Phys. 243, 14-45. 
BORN, M. & WOLF, E. (1964). Principles of Optics. New 

York: Pergamon Press. 
DWIGHT, H. B. (1961). Tables of Integrals and Other 

Mathematical Data. New York: Macmillan. 
GEVERS, R. (1962). Philos. Mag. 7, 1681-1720. 
INDENBOM, V. L. & CHUKHOVSKY, F. N. (1972). Usp. Fiz. 

Nauk, 107, 229-265. 
INDENBOM, V. L., SLOBODETSKY, I. SH. & TRUNI, K. G. 

(1974). Zh. Eksp. Teor. Fiz. 66, 1110-1120. 
HART, M. (1968). Br. J. Appl. Phys. 1, 1405-1408. 
PINSKER, Z. G. (1974). Dynamic Scattering of X-rays in 

Ideal Crystals (in Russian). Moscow: Nauka. 
SHULAKOV, E. V. & ARISTOV, V. V. (1978). Proceedings of 

the All-Union Conference on X-ray Multiwave Scattering, 
pp. 129-137. Univ. of Erevan. 

SLOBODETSKY, I. SH., CHUKHOVSKY, F. N. & INDENBOM, 
V. L. (1968). Pis'ma Zh. Eksp. Teor. Fiz. 8, 90-94. 

TAKAGI, S. (1962). A eta Cryst. 15, 1311-1312. 

Acta Cryst. (1979). A35, 213-220 

Derivation of Three-Phase Invariants from the Patterson Function 
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A b s t r a c t  

The idea of Anzenhofer & Hoppe [Phys. Verh. (1962), 
13, 119] that all the Fourier coefficients of the function 
p(r).p(r + u) are zero if the Patterson function is zero 
at vector point u is first developed; it is shown that the 
three-phase cosine and sine invariants may be derived 
jointly by solving two sets of linear equations. A least- 
squares method exploiting the entire Patterson function 
is then presented; this may allow the three-phase cosine 
and sine invariants to be determined and/or refined. 
As expected, the low-valued Patterson regions con- 
tribute most to the least-squares procedure. 

0567-7394/79/010213-08501.00 

I n t r o d u c t i o n  

Anzenhofer & Hoppe (1962) first pointed out that, if the 
Patterson function P(u) of any structure is zero at 
some vector point u, exact equations among structure 
factors may be derived. In fact, the shift-product 
function p(r).p(r + u) must be zero for any r; conse- 
quently, all its Fourier components must vanish, thus 
producing a set of linear equations among products of 
structure factor pairs (Anzenhofer & Hoppe, 1962; 
Hoppe, 1962, 1963). More recently, Dideberg (1977) 
also discussed applications of the same idea. It is 
interesting to recall that Main & Woolfson (1962, 1963) 
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